Mitigating Lithium-Ion Battery Energy Storage Systems (BESS) Hazards

Jens Conzen + Michael Townsend

分享这篇文章

2023年12月8日

电池储能系统(BESS)使用电池和其他电气设备的排列来存储电能. 越来越多地用于住宅, 商业, 工业, 用于调峰或电网的公用事业应用程序支持这些装置,从大型室外和室内场地(例如.g., warehouse-type buildings) to modular systems. 集装箱系统, 模块化设计的一种形式, have become a popular means of efficiently integrating BESS projects.

由于快速的响应时间, lithium-ion BESS can be used to stabilize the power grid, 调制栅极频率, and provide emergency power or 工业-scale peak shaving services, reducing the cost of electricity for the end user. 然而, 高功率和快速的充电周期会给电池带来压力,导致电池随着时间的推移而退化, 哪些不利于安全.

在过去的四年里, 世界上有30多个大型BESS发生故障,导致火灾和其他事故, 在某些情况下, 爆炸. 考虑到这些问题, 专业人士和当局需要制定和实施战略,以防止和减轻BESS火灾和爆炸的危险. NFPA 855(储能系统安装标准)和国际消防规范第1207章(电力储能系统)中提供的指南是第一步.

热失控

Prevention and mitigation measures should be directed at thermal runaway, which is by far the most severe BESS failure mode. If thermal runaway cannot be stopped, fire and explosion are the most severe consequences.

锂离子电池的热失控本质上是锂离子BESS火灾或爆炸的主要原因. Under a variety of scenarios that cause a short circuit, 当储存的化学能转换成热能时,电池会发生热失控. If the process cannot be adequately cooled, an escalation in temperature will occur fueling the reaction, which can result in cell rupture and release of flammable and toxic gases. The most common initiating events for thermal runaway include:

  • 电池制造缺陷
  • 收费过高(e.g.,逆变器故障)
  • 过热(e.g., poor cooling capacity or cooling system failure)
  • 机械虐待(e).g.(地震事件或撞击)

Battery Management System as a Barrier to 热失控

在电池储能系统中, one of the most important barriers is the battery management system (BMS), 通过确保电池系统在安全的参数范围内运行(e.g.,电荷状态,温度). 在UL 9540中列出了BESS, BMS监视器, 控制和优化电池模块的性能,并在出现异常情况时将其与系统断开. The BMS also provides charge and discharge management of the batteries.

In case of undervoltage or overvoltage, 过热现象, 或者过流状态, the BMS will alarm and then limit the charge and discharge current or power. 在紧急情况下, the BMS will cease operations and electrically disconnect each battery enclosure. This is assuming that the BMS is not damaged and operational. 然而, if an internal cell breakdown has occurred, the BMS will not stop the thermal runaway.

爆炸控制

导致火灾或爆炸的热失控是需要预防或减轻的最严重的危险. While there has been some guidance on fire control and suppression, 许多BESS制造商, integrators and end-users struggle with the explosion control requirement. 爆炸控制 can be achieved by providing one of the following:

  • Explosion prevention systems are designed, 安装, 操作, maintained and tested by NFPA 69 (Standard on Explosion Prevention Systems)
  • 爆燃通风按照NFPA 68(爆燃通风防爆标准)安装和维护

If implementing an explosion prevention system according to NFPA 69, 在所有可预见的操作条件和材料负荷变化下,可燃浓度应保持在最低燃耗量的25%或以下. One option for achieving these requirements is ventilation or air dilution. This can be accomplished by installing a forced ventilation system, 当气体浓度水平超过预先设定的设定值时,哪种气体检测系统可以自动启动.

此外, 爆燃通风为迅速膨胀的气体在爆燃的情况下离开外壳创造了一条通道. 它可以是具有挑战性的保护BESS外壳与很少的自由空气量和高度的内部阻塞. Performance-based engineering methods, such as Computational Fluid Dynamics (CFD), 在这种情况下可能需要.

Best Practices for Mitigating BESS Hazards

Compliance with NFPA 855 is increasingly required to permit a BESS, 国际消防规范(IFC)已经影响了有关这些系统的地方消防规范要求. Hence, NFPA 855 and the IFC are used to guide best practices along with industry experience (i.e., lessons learned from failure events).

The following are best practices for BESS with an energy capacity greater than 600 kWh. 这些是针对BESS产品级别的,并不适用于各种安装地点. Depending on the installation location of the BESS, additional local requirements and preferences may need to be considered. 此外, all features shall meet applicable local codes and standards, including the use of listed equipment.

  • 减灾分析(HMA). HMA aids in identifying and mitigating hazards created with the BESS technology. At a minimum, the HMA should address the failure modes identified in NFPA 855 and the IFC. The HMA can be used to analyze the effectiveness of 安装 safety measures.
  • 烟雾和火灾探测. 烟雾和火灾探测设备需要安装在大型BESS外壳中,而不是远程或室内应用. 国际金融公司要求在包含固定电池储能系统的“房间”中安装烟雾探测和自动喷水灭火系统.
  • 火控与灭火. 消防控制和灭火是NFPA 855的规定要求,但如果项目地点偏远和户外,经当局和业主批准,可以省略. 国际金融公司要求为装有固定电池储能系统的“房间”配备自动喷水灭火系统. 如果发生热失控而导致火灾,水是首选的灭火剂. 虽然无法阻止细胞内已经开始的热失控过程, 消防喷头能够控制火势蔓延,减少锂离子电池起火的危险.
  • 爆炸控制. NFPA 855要求采取爆燃通风(NFPA 68)或防爆(NFPA 69)形式的爆炸控制措施。, including cabinet-style BESS enclosures.
  • 气体探测. 气体探测 may be used as part of an NFPA 69 explosion control solution.
  • 热失控保护. 热失控保护是必需的,通常可以通过使用UL 1973认证的电池管理系统来实现.
  • 尺寸和分离要求. 应保持每个BESS容器与邻近建筑物之间的距离,以减少火势蔓延. 在考虑全尺寸火灾试验数据的情况下,有可以缩短的规定距离, performance-based methods or by using engineered fire barriers.
  • 水的供应. Since water is the preferred agent for suppressing lithium-ion battery fires, a permanent source of water is recommended.

Address the Fire Safety Challenges of Lithium-Ion Battery Storage

BESS是减少碳排放和实现可再生能源发电技术的重要因素. In a time of increased development and deployment of BESS installations, it is important to make sure that it is done safely. Jensen Hughes可以帮助您解决与锂离子电池存储和处理相关的独特消防安全挑战,并确保满足建筑和消防规范要求.

延斯·康森的大头照

作者简介

Jens Conzen
Jens支持与锂离子电池安全以及储能系统(ESS)的火灾和爆炸安全相关的研究,并广泛参与化学反应堆安全系统的开发.